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Constant-Pattern Adsorption Fronts with Mass 
Transfer Resistances in Both Solid and Fluid Films 

J .  S .  WATSON 
CHEMICAL TECHNOLOGY DIVISION 
OAK RIDGE NATIONAL LABORATORY 
OAK RIDGE. TENNESSEE 37831, USA 

DEPARTMENT OF CHEMICAL ENGINEERING 
UNIVERSITY OF TENNESSEE 
KNOXVILLE. TENNESSEE, USA 

ABSTRACT 

The shape and width of constant-pattern adsorption fronts can be predicted 
by relatively simple graphical/numerical methods analogous to methods used for 
analyzing concentration profiles in countercurrent extraction or adsorption sys- 
tems when there is significant mass transfer resistance in both the fluid and solid 
film. This paper presents an extension of procedures described by the author for 
predicting constant-pattern fronts with film resistance in only one phase. The 
procedure is illustrated for systems with Langmuir isotherms, and the results are 
shown in a series of dimensionless figures that cover a wide range of equilibrium 
conditions and mass transfer coefficients. 

INTRODUCTION 

In  an earlier study (1)  the author illustrated that well-known graphic or 
numerical procedures for analyzing countercurrent extraction or absorp- 
tion processes can be modified to describe the shape of constant-pattern 
adsorption or ion-exchange processes in fixed beds. The procedure is 
analogous to the development of exact solutions (2), but the exact solu- 
tions are often complex, difficult to use, and available for only selected 
isotherms (3-6). Major advantages of the numerical/graphical solutions 
are simplicity and the ability to describe constant-pattern breakthrough 
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2608 WATSON 

fronts for any shape of equilibrium isotherm. The procedure gives only 
the width and shape of fully established breakthrough fronts; the position 
of the front is more readily established by conventional means from the 
capacity of the adsorbent or ion-exchange material, the concentration of 
solute in the fluid, and the flow rate. 

This procedure is also limited to cases where the mass transfer in both 
phases can be described in terms of mass transfer coefficients, often called 
“film coefficients.” Mass transfer in the fluid phase is usually best de- 
scribed using film coefficients, but they are not always satisfactory for 
describing mass transfer in the solid adsorbent. However, an effective 
approximation can be obtained when the adsorbent is free to diffuse within 
the solid particles, such as in most ion-exchange systems and adsorption 
systems with surface diffusion or solid diffusion within the particles. A 
good approximation is unlikely when the adsorbed molecules are attached 
rigidly to the solid pore surfaces and only a small fraction of molecules 
in the pore fluid that is not attached to the solid surfaces is free to diffuse. 

BACKGROUND 

In an earlier study an analysis was presented for cases with mass trans- 
fer resistance in only one phase. Ion-exchange equilibrium (isotherm) was 
illustrated in which analytical solutions were not available. The results 
were presented in a series of dimensionless graphs that described con- 
stant-pattern fronts for a wide range of ion-exchange conditions (iso- 
therms, mass transfer coefficients, and flow rates). 

The analogy between constant-pattern adsorption fronts and counter- 
current extraction or absorption becomes apparent when the front is 
viewed from a reference moving down the bed at the same rate as the 
front. The fluid then appears to be moving down the bed with a velocity 
of V - Vf, where V is the fluid velocity and Vf is the velocity of the 
front, and the solid appears to be moving upward at a velocity of Vf. 
The operating line for such a countercurrent operation (for dilute systems 
where the fluid velocity does not change) is shown to be a straight line 
connecting the point on the isotherm that represents the initial condition 
of the bed (the origin if the bed initially contains no solute) and the point 
on the isotherm that represents the final condition after the front has 
passed (the point on the isotherm corresponding to the concentration of 
solute in the feed). The operating line is developed from a material balance 
between an arbitrary cross section of the column and a cross section far 
(an infinite distance) upstream or downstream in an infinitely long column. 
This is analogous to material balances (operating lines) in countercurrent 
absorption or liquid-liquid extraction columns, but there are two impor- 
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CONSTANT-PATTERN ADSORPTION FRONTS 2609 

tant differences. The first difference is that the concentration profile 
(front) in the column must be viewed from a moving reference so that the 
adsorbent particles appear to be moving up the column at the same rate the 
front moves down the column. The second difference is that the column is 
assumed to be infinitely long, meaning that the operating line and the 
equilibrium curve intersect at infinite distances in either direction from 
the concentration front. This is illustrated in Fig. 1. 

The number of transfer units (NTU) in such a column is assumed to be 
infinite, but important information comes from determining the NTU in 
finite portions of the column, those portions that are within the moving 
front. The NTU can be calculated for any portion of the region between 
the two intersections of the operating line with the equilibrium isotherm. 
A series of positions on the operating line ( C  for the concentration in the 
fluid and Q for the concentration in the solid) and on the equilibrium 
isotherm are used to find C*, the concentration in the fluid that would be 
in equilibrium with the solid loading, or Q*, the concentration in the solid 
that would be in equilibrium with the concentration in the bulk fluid. These 
values are used to integrate graphically, numerically, or analytically and 
determine the NTU based upon resistance in either the fluid (f) or solid 
( s )  phases. 

r c 2  

NTUf = J,, dC/(C - C*) (1) 

0.8 

0.7 

0.6 

Q' 0.5 

0.4 

0.3 

0.2 

0.1 

1 2 
C' 

3 4 

FIG. I Illustration of an equilibrium isotherm, an operating line, and calculation of the 
bulk and interfacial concentrations with mass transfer resistance in both phases. 
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The integration is made from CI to C2 (or from Ql to Q2) .  The calcula- 
tions are similar to those used for countercurrent systems and are de- 
scribed in standard textbooks on separations (7, 8). The NTU can be 
calculated from the position in the front where the concentration has any 
arbitrary value. It is convenient for the starting value to be the point where 
the concentration is halfway between the inlet concentration and the con- 
centration far downstream where the fluid is in equilibrium with the inlet 
adsorbent (the initial solids in the bed); this is often called the 50% break- 
through point in the front. The following example is the most common 
case in which the initial adsorbent is free of solute. Then the final concen- 
tration in the fluid far downstream is zero. 

A plot of C (or Q) vs NTU is a dimensionless plot of the breakthrough 
front. If the calculations start from the 50% breakthrough point on the 
front, the NTU will be zero at that point, and the NTU at different concen- 
trations will correspond to the changes in the NTU between the 50% 
breakthrough point and the new concentration. Note that the calculation 
cannot begin at either end point where the operating line crosses the equi- 
librium isotherm because the value of the integrals for NTU would be 
indeterminant. Hence, it is more convenient to begin the integration at 
the concentration where C is one-half the inlet concentration rather than 
where C is at one end of the column. Remember that the concentrations 
in the bulk fluid and bulk solid phases are both given by the operating 
line; therefore, the position in the front is where the concentration is one- 
half the distance from the inlet fluid concentration, and the final fluid 
concentration is also the position where the concentration in the solid is 
midway between the initial concentration and the final concentration. 

The integral can be evaluated as far as desired in any direction from 
that 50% breakthrough point to establish the shape of as much of the 
breakthrough front as desired. The dimensionless breakthrough curve ( C  
vs NTU) applies to all mass transfer coefficients and can be converted to 
a dimensional front by multiplying the NTU values by the height of a 
transfer unit, HTU, or ( V  - Vf)/kfa, for resistance in the fluid phase. The 
column length that corresponds to any change in concentration is the 
product of the HTU and the NTU that corresponds to the change in con- 
centration: 
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The mass transfer coefficient in the fluid phase is kf, and the external 
surface area of adsorbent particles per unit volume of column is a. 

RESISTANCE IN BOTH FLUID AND SOLID FILMS 

When there is resistance in both phases, breakthrough curves can be 
calculated using the same principles, but one must account for resistances 
in both phases to obtain the concentrations at the solid-fluid interface. 
The way to approach the problem has already been outlined in related 
methods for absorption of extraction systems. Neglecting accumulation 
of solute in the fluid or solid films, the rates of solute transport through 
the two films can be equated (8): 

(4) 

(5 )  
where Ci and Qi refer to concentrations at the solid-fluid interface and 
kf and k, are mass transfer coefficients in the fluid and solid “films,” 
respectively. This equation describes a “tie” line joining positions at the 
interface to conditions in the bulk fluid and solid (see Fig. 1). The slope 
of the line is - kf/k,; thus, the dimensionless distance (NTU) can be calcu- 
lated based upon the resistance in either film. Based upon the fluid film, 
the dimensionless distance is 

kf(C - Ci) = ks(Qi - Q) 

kflks = (Qi - Q)/(Ci - C )  

and based upon the solid film, 

The integral can be evaluated from the 50% breakthrough point by inte- 
grating in both directions from that point. The location of the concentra- 
tions at the interface is illustrated in Fig. 1. The integral can be evaluated 
by selecting several points on the operating line and evaluating C and Ci 
(or Q and Qi). The integration can be done analytically, numerically, or 
even graphically if there is no algebraic expression for the equilibrium 
curve. Figure 1 shows a series of lines with a slope of - kflk,, and different 
values of (C - Ci) or (Q - Qi) for different values of C. The result 
of the integration is a breakthrough curve based upon the dimensionless 
distance: C (or Q) is plotted against NTU. This can be converted into the 
more familiar dimensioned breakthrough curve by multiplying all of the 
dimensionless distances (NTU) by V l k p  (or Vlkfa); that is, multiply the 
NTU by the HTU. 
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This approach has broad applications and can be applied to any con- 
stant-pattern breakthrough curve when the mass transfer resistance can 
be described in term of mass transfer coefficients (film resistances). As 
noted earlier, constant-pattern fronts are common in commercial adsorp- 
tion and ion-exchange operations, and the most common situation where 
the analysis cannot be applied is when mass transfer in the solid phase is 
by “pore diffusion,” diffusion of unadsorbed molecules in the pores. 

ILLUSTRATION OF THE APPROACH USING 
THE LANGMUIR ISOTHERM 

As noted, the integration can be done, at least graphically, for even the 
most complex equilibrium curves. To illustrate the approach, the Lang- 
muir isotherm will be used. Analytical expressions are available for break- 
through curves with resistance in only one phase, but this paper will show 
the results for resistances in two films. The calculations will be performed 
numerically and presented in generalized dimensionless forms so they can 
be applied most generally. 

The Langmuir isotherm is usually written 

Q = QmkC/(l + kC) (8) 

where Q is the loading in the solid, Qm is the maximum loading in the 
solid which occurs as C approaches infinity, k is a Langmuir constant that 
corresponds to the distribution coefficient (slope of the isotherm) at very 
low concentrations, and Cis  the concentration in the fluid. This expression 
can be written in terms of dimensionless variables: 

(9) 

where C‘ is the product kC, and Q’ is the fraction of the solid adsorption 
capacity occupied by solute. The normalized Langmuir isotherm is shown 
in Fig. 2. 

The operating line connects the two points on the operating line that 
correspond to the initial loading of the bed and the equilibrium loading 
after the front has passed, that is, the loading when the bed is in equilib- 
rium with the feed. If the feed concentration is Cb, the loading of the bed 
after the bed is saturated will be 96. The saturated solid concentration 
will be less than the maximum capacity of the adsorbent; therefore, Q: 
will be less than unity. Similarly, the concentration in the fluid exiting the 
column will be in equilibrium with the initial loading in the original bed: 

(10) 

The subscript 0 refers to conditions in the initial bed. For the numerical 

Q’ = Q/Qm = C’/(l + C )  

Cb = QJ(1 - Qb) 
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FIG. 2 The normalized Langmuir isotherm and operating lines for cases where the concen- 
tration in the fluid feed loads the adsorbent to 20.40.60, and 80% of the maximum adsorbent 

capacity. 

illustration of the two film resistances with a Langmuir isotherm, the initial 
loading in the bed will be assumed to be zero; hence, Q; and Cb will be 
zero, and the operating line will go through the origin of the isotherm. 

RESULTS 

The results based upon resistance in the fluid phase are shown in Figs. 
3 through 10. Each curve represents a different value of Qi ranging from 
0.2 to 0.8. The operating lines for each case are shown in Fig. 2. Figures 
3 through 6 correspond to cases where the reference phase is the fluid 
phase, and the integration is described in Eq. (6). Figures 7 through 10 
correspond to cases where the reference phase is the solid phase, and the 
integration is described by Eq. (7). There are several curves on each fig- 
ure, and each curve corresponds to a different value of the ratios of the 
film coefficients, kflk, .  These plots hold for all (absolute) values of kf and 
k , .  The absolute value of the coefficients is included in the HTU, the 
factor that converts the NTU shown in the figures to actual column dis- 
tances. Four figures are given for transfer units based upon the fluid- 
phase resistance, and four figures are given for transfer units based upon 
resistance within the solid phase. The four figures in each set correspond 
to different inlet concentrations in the fluid, but the inlet concentrations 
are expressed as the fraction of the adsorbent adsorption capacity that is 
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FIG. 3 Normalized breakthrough curves based upon concentrations in the fluid phase and 
a fluid feed concentration that loads the adsorbent to 20% of its maximum capacity (individ- 

ual curves correspond to kflk, = 0.0, 0.05, 0.1, 0.2, 0.3, 0.5, and I .O) .  

occupied by the adsorbed molecules when in equilibrium with the feed 
(values of Q' of 0.2, 0.4, 0.6, and 0.8). This is illustrated in Fig. 2, where 
the normalized Langmuir isotherm is shown along with four operating 
lines that each correspond to a different feed concentration used in the 
calculated results. The normalized fluid concentrations, C' , can be deter- 
mined from Eq. (10) or from the interactions of the operating lines with 
the equilibrium curve given in Fig. 2. 

Each figure contains several curves, and each curve corresponds to 
different ratios of the mass transfer coefficients for the fluid film to the 
mass transfer coefficient for the solid film. The different values of the 
ratio are given in the figure captions. Since many of the curves lie rela- 
tively close together, the figures would have been cluttered if each curve 
had been labeled. Instead of labeling every curve, only the highest and 
the lowest values of the ratio are shown. The values for the ratio for the 
other curves can be obtained by counting from the curve with the highest 
or lowest value for the ratio kdk, .  
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FIG. 4 Normalized breakthrough curves based upon concentrations in the fluid phase and 
a fluid feed concentration that loads the adsorbent to 40% of its maximum capacity (individ- 

ual curves correspond to krlk, = 0.0, 0.05, 0.1, 0.2, 0.3. 0.5. and 1.0). 

When the transfer units are based upon the fluid phase, a value of 
kJk ,  equal to zero corresponds to the case where all of the resistance is 
in the fluid film. That ratio gives the sharpest curves shown in those fig- 
ures. Any additional mass transfer resistance in the solid phase makes 
the breakthrough curves more diffuse. Note also that as the value of Q' 
increases, the portion of the isotherm used has more curvature, and the 
breakthrough curves become sharper. When the transfer units are based 
upon the resistance in the solid film, the ratio kflk,  is infinite when there 
is no resistance in the fluid film. This corresponds to the sharpest break- 
through curves shown based upon the solid phase resistance, and addition 
of mass transfer resistance in the fluid phase causes the breakthrough 
curve to become more diffuse. 

These are normalized breakthrough curves with the distances on the 
horizontal axes expressed in dimensionless units, NTU. The actual axis 
expressed in units such as meters depends upon the HTU and thus upon 
the actual values of the mass transfer coefficients in the reference phase 
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FIG. 5 Normalized breakthrough curves based upon concentrations in the fluid phase and 
a fluid feed concentration that loads the adsorbent to 60% of its maximum capacity (individ- 

ual curves correspond to kflk, = 0.0, 0.05, 0.1, 0.2, 0.3, 0.5. and 1.0). 
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FIG. 6 Normalized breakthrough curves based upon concentrations in the fluid phase and 
a fluid feed concentration that loads the adsorbent to 80% of its maximum capacity (individ- 

ual curves correspond to kflk, = 0.0, 0.05, 0.1, 0.2, 0.3, 0.5. and 1.0). 
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FIG. 7 Normalized breakthrough curves based upon concentrations in the solid phase and 
a fluid feed concentration that loads the adsorbent to 20% of its maximum capacity (individ- 

ual curves correspond to kflk, = 0.5, 1.0, 2.0, 5.0, 10.0, and infinity). 
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FIG. 8 Normalized breakthrough curves based upon concentrations in the solid phase and 
a fluid feed concentration that loads the adsorbent to 40% of its maximum capacity (individ- 

ual curves correspond to kflk,  = 0.5, 1.0, 2.0, 5.0, 10.0. and infinity). 
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FIG. 10 Normalized breakthrough curves based upon concentrations in the solid phase 
and a fluid feed concentration that loads the adsorbent to 80% of its maximum capacity 

(individual curves correspond to kdk, = 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, and infinity). 
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and the fluid velocity. The breakthrough curves can be sharp or diffuse 
depending upon the HTU, but if the distance (or time) scale is expanded 
sufficiently, the shape of the front will look like these normalized curves. 

No values of Qh below 0.2 were studied because the isotherm ap- 
proaches the simple linear case for lower values of Q:. Although an iso- 
therm with any negative curvature (favorable isotherm) will eventually 
approach a constant pattern, increased time and distance may be required 
to establish the constant pattern. The NTU can be calculated from the 
position in the front where the concentration has any arbitrary value. 

USE OF THE RESULTS 

The results are presented in Figs. 3-10, and those working on systems 
with Langmuir isotherms can use these figures directly unless their condi- 
tions (QL or kdk, )  are beyond the range of conditions covered by the 
figures. Those working on systems with other isotherms can generate 
similar figures, including isotherms that are only available as graphs of 
experimental data. 

The dimensionless breakthrough curves presented here can be used in 
any of several ways. The appropriate figure can be selected that corre- 
sponds to the fractional loading, Qf,  of the adsorbent at saturation with 
the feed fluid. Of course, it may be necessary to interpolate between 
curves on two figures. 

If the mass transfer coefficients are known, the HTU can be calculated 
and used to convert the dimensionless distances (NTU) to the actual dis- 
tances and predict the breakthrough curves. It is more common to observe 
concentrations in fluid leaving a column with a given length than to ob- 
serve the concentrations within the column at a given time. If the break- 
through front is to be predicted for a given position as a function of time, 
the real distances can be divided by - Vf, the velocity of the front, to 
convert the distances to time. 

If only the ratio of the mass transfer coefficients were known, measure- 
ments of breakthrough curves could be used to evaluate the value of the 
HTU, and thus the absolute value of the mass transfer coefficients, by 
comparing the actual distances (or breakthrough times) with the NTU 
required to reach two specific concentrations on the breakthrough curve. 
The distance (or time) between two concentrations on the breakthrough 
curve divided by the NTU between those two concentrations is the HTU. 
The mass transfer coefficient can be obtained by dividing the velocity 
( V  - Vf) by the HTU. 

The analysis is more complex if the ratio kdk, is not known, which is 
likely to be the case. It is more likely that one resistance, such as fluid 
film resistance, will be known. The fluid film resistance can be estimated 
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from correlations developed from data on similarly shaped packing mate- 
rial in other adsorption beds or even chemical reactors. The solid film 
resistance can then be estimated. Note that the curves in these figures 
represent different values for the ratio of the mass transfer coefficients in 
the fluid and solid phases. [If the fluid film coefficient is known (or esti- 
mated) from correlations, the dimensionless distance given in terms of 
the NTU can be based upon the mass transfer coefficient for the fluid 
film and can be converted into dimensioned units.] 

where Zs0% is the position in the column where the breakthrough concen- 
tration is 50% of the final or maximum concentration. The predicted 
curves for different ratios of the mass transfer coefficients can then be 
compared directly with the experimental data. As the ratio of the solid 
film coefficient to the fluid film coefficient increases, the predicted front 
becomes broader and less “sharp.” One can interpolate between the 
curves to find the best value of the ratio to match the data and, thus, the 
best estimate for the mass transfer coefficient in the solid “film.” Of 
course, the experimental time should be multiplied by ( V  - Vf)/kfaVf to 
convert the experimental breakthrough curve to the dimensionless form 
for comparison with the calculated curves and the estimation of the effec- 
tive solid film resistance. 

The comparison of predicted and experimental fronts should be rela- 
tively simple, provided the shapes of the experimental curves are essen- 
tially the same as those of the predicted curves. However, if the experi- 
mental curve does not lie between two curves in Figs. 3 through 10 and 
seems to cross two or more curves, estimates of the solid-film mass trans- 
fer coefficient may be difficult. Such a problem can arise if the two-film 
model is not correct. One should remember that the assumption of a solid 
film is particularly questionable for some situations. The assumption that 
mass transfer in the solid can be treated as “film” comes from Glueckauf s 
observation that the long-term solution for mass transfer into solids with 
linear isotherms can be approximated by an effective film resistance (9). 
The equations are similar for systems with nonlinear isotherms only when 
all of the solute in the solid is free to diffuse with the same diffusion 
coefficient. This occurs when diffusion within the solid is dominated by 
surface diffusion or diffusion through the solid, and essentially all of the 
solute is on the surfaces or in the solid. The equations are significantly 
different for pore diffusion when diffusion occurs only in the pores and 
most of the solute is on the surfaces or in the solid and is relatively im- 
mobile. 
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Note also that the contributions from dispersion were neglected. In 
systems with linear isotherms, the effects of fluid dispersion can be com- 
bined with the two-film resistances to give easily estimated overall resis- 
tance to mass transfer. However, in systems with nonlinear isotherms, 
these combinations are not so straightforward, and this is another potential 
reason why the predicted shape of the curves may be different from those 
observed experimentally. 

CONCLUSIONS 

A relatively simple approach to the prediction of constant-pattern ad- 
sorption fronts can be used with significant resistances in both the fluid 
and solid phases, provided these resistances can be expressed in terms 
of film coefficients, and the results are presented in graphs that cover a 
wide range of conditions for systems with Langmuir isotherms. Similar 
graphs can be developed for other common isotherms, or graphs can be 
developed for essentially and empirically measured isotherms. The proce- 
dures are relatively simple extensions of design procedures used for coun- 
tercurrent absorption and/or extraction systems. However, when using 
the procedure, one should remember that when mass transfer resistance 
in the solid cannot be described as a film resistance or when fluid disper- 
sion is important, the procedure is inappropriate and can give significantly 
incorrect results. 
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